5,956,479

41

11. The apparatus of claim 10, wherein the means for
using the program counter value to locate the component
comprises means for converting the program counter value
into a component name when the cache memory does not
contain a component name at a location addressed by the
program counter value and means for storing the component
name in the cache memory.

12. The apparatus of claim 9, wherein the compiler
controlling means comprises means for using the compiler
to create, as part of the symbolic debugging information, at
least one map which indicates a relation between the com-
ponent object code and the component source code and
means for associating the at least one map with the located
component.

13. The apparatus of claim 9, wherein each computer
program is constructed as a collection of components with
dependencies between components, each component having
an interface and an implementation and wherein all compo-
nent dependencies are from component interfaces and
wherein the compiler controlling means comprises means
for controlling the compiler to recompile source code for the
located component and all components which depend on the
located component.

14. The apparatus of claim 9, wherein the compiler
controlling means comprises means for updating symbolic
debugging information which was originally created by
compiling and linking all of the components.

15. The apparatus of claim 9, further comprising means
for executing a browser program with the symbolic debug-
ging information to present source code from a located
component on the display when program execution halts in
response to an exception generated by the program.

16. The apparatus of claim 15, wherein the executing
means comprises means for applying a program thread
which generated the exception as an input to the browser
program.

17. A computer program product for use in a computer
system having a memory, a display, a program counter with
a value, a program consisting of a set of named components
stored in a database in the memory, each component includ-
ing an attribute indicating whether the component data is
valid, source code for implementing the component, and
object code for executing the component, a compiler, and a
debugger for monitoring execution of the program to detect
a program execution halt during debugging, a computer
program product for dynamically generating symbolic
debugging information comprising a computer usable
medium having computer readable program code thereon,
including:

(a) program code for using the program counter value to
locate a component in the database when program
execution halts during debugging;

(b) program code for checking the attribute of the located
component to determine whether symbolic debugging
information relating the object code to the source code
is valid;

w

10

20

25

30

40

45

50

55

42

(c) program code for controlling the compiler to generate
the symbolic debugging information by recompiling
the source code of the located component when the
symbolic debugging information is not valid;

(d) program code for associating valid symbolic debug-
ging information with the located component; and

(e) program code for controlling the debugger to continu-
ing debugging the program.

18. The computer program product of claim 17, wherein
the program code for locating a component in the database
comprises program code for using the program counter
value to address a cache memory and program code for
obtaining a program component name from the cache
memory.

19. The computer program product of claim 18, wherein
the program code for locating a component in the database
comprises program code for converting the program counter
value into a component name when the cache memory does
not contain a component name at a location addressed by the
program counter value and program code for storing the
component name converted from the program counter value
in the cache memory.

20. The computer program product of claim 17, wherein
the program code for controlling the compiler comprises
program code for using the compiler to create, as part of the
symbolic debugging information, at least one map which
indicates a relation between the component object code and
the component source code and program code for associat-
ing the at least one map with the located component.

21. The computer program product of claim 17, wherein
each computer program is constructed as a collection of
components with dependencies between components, each
component having an interface and an implementation and
wherein all component dependencies are from component
interfaces and wherein program code for controlling the
compiler comprises program code for controlling the com-
piler to recompile source code for the located component
and all components which depend on the located compo-
nent.

22. The computer program product of claim 17, wherein
program code for controlling the compiler comprises pro-
gram code for updating symbolic debugging information
which was originally created by compiling all of the com-
ponents.

23. The computer program product of claim 17, further
comprising program code executing a browser program with
the symbolic debugging information generated by the com-
piler to present source code from a located component on the
display when program execution halts in response to an
exception generated by the program.

24. The computer program product method of claim 23,
wherein the program code for executing the browser pro-
gram comprises program code for applying a program thread
which generated the exception as an input to the browser
program.



